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Short-range forces

» Although the WIMP hypothesis remains well motivated, it is possible that it
will not ultimately be confirmed

« Searching for new short-range forces can probe a variety of models of
dark matter and dark energy that can be difficult to test in other ways:

- Large extra dimensions (KK dark matter) EI
« Hidden sector dark matter v

+ New forces mediated by dark photons or light
millicharged particles from the dark sector Model L e<1
« Heavy, stable millicharged particles bound in

matter

« Exchange forces from new scalars (e.g. scalar
axions, dilatons, radions, axions, ALPs, ...)

« Dark energy models with screened scalars (e.g.,
chameleons, symmetrons, galileons, ...)

ci. Am. (2003)

Given the large number of mechanisms for generating such forces, this is
an interesting (and largely unexplored) parameter space for new physics!
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Experimental constraints

« Typically parameterize non-Newtonian potential with Yukawa form:

Vi) = _Gm1m2 (1 n &G_T/A)

r

« Strong limits from terrestrial and astrophysical tests exist at large distance

Current experimental constraints on non-Newtonian forces:
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For short length scales,
constraints are much
weaker: o < 10" for
A=1pum

May be possible to
significantly improve
sensitivity at micron length
scales in next few years

This will allow us to probe
substantial regions of
previously unexplored
parameter space

LBL Dark Matter Workshop - June 9, 2015



Experimental constraints

« Typically parameterize non-Newtonian potential with Yukawa form:

Experimental constraints at short distance:
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Optical levitation

* Previous measurements at short distance have used mechanical springs
as force sensors (e.g. torsion pendulums, micromachined cantilevers)

« Suspending test mass with an “optical spring” offers several advantages:

« Thermal and vibrational noise from
mechanical support minimized Schematic of optical levitation technique:

« At high vacuum, test mass can be l
isolated from surroundings and cooled
optically (without cryogenics)

Q)

n SiOo Au
 Test mass position can be controlled and <

measured precisely with optics

» Dielectric spheres with a wide range of
sizes (~10 nm — 10 um) can be used

« Extremely low dissipation is possible:
Q ~ 102 at 10-1° mbar

Geraci et al., PRL 105, 101101 (2010)
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Experimental setup

o Ph h of trapped microsphere:
« Developed setup capable of levitating hotograph of trappec microspnere

SiO, microspheres with r=0.5-5 um

* Microspheres are levitated in vacuum
chamber with A = 1064 nm, ~few mW
trapping laser

« Imaged by additional A = 650 nm beams

* Have demonstrated trapping times of
>100 hrs at ~10"7 mbar

Experimental setup: Simplified optical schematic:
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Microsphere neutralization

Response amplitude [e]
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Electromagnetic backgrounds can overwhelm signal
from new short-range forces

Have demonstrated controlled discharging with
single e precision

Once neutral, microspheres have not spontaneously
charged in total integration time of more than 10° s

Also measure force sensitivity for each microsphere
in situ: o =5 x 10177 N Hz"1/2

Electrode configuration:

Example of discharging process:
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Attractor design

« Short-range force measurements
require gravitational attractor that
can be positioned near microsphere

 Attractor with spatially varying
density allows reduction of many
backgrounds

« Have begun
fabrication of Au
and Si test -
mass arrays

» Au shielding
layer screens
electromagnetic
backgrounds
that vary with
composition

200 pm

A —
Yy g@
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Images of preliminary fabrication tests:

Side view:

s=0.2-5um
t=05-3um
r,=5pum
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Microsphere positioning

« The optical trap can be precisely controlled using the acousto-optic
deflector (AOD)

« Microsphere can be positioned with micron separations from the attractor
and swept along the face at up to 200 Hz

« Can also “jitter” trap at frequencies above microsphere response to
modulate spring constant and mix signal away from harmonics of motion

Side view of microsphere near attractor: Example of trap modulation:
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Differential Casimir force [N]

Additional backgrounds

 |f unscreened, differential Casimir force between Au and Si can present
dominant background

« (Coating attractor with Au shield layer (0.5 to 3 um thick) can sufficiently
suppress this background

« Background force due to surface “patch potentials” should be subdominant
for expected face-to-face separations

Calculation of differential Casimir force: Calculation of force due to patch potentials:
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Expected sensitivity
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Have calculated expected sensitivity to Yukawa strength parameter, a, as a

function of length scale, A

Assume face-to-face separation of s = 0.2 um (dashed) or 2 um (solid)

Plot sensitivity for
demonstrated o = 5x107" N
Hz2 (blue) and for pressure
limited o at 10° mbar (red)

Assume Au shielding layer of
sufficient thickness to make
Casimir background negligible

Improvement in sensitivity by <
several orders of magnitude

over existing limits at

0.1-40 pm is possible

Hatched regions, lines show
selection of theoretical models
from PRD 68 124021 (2003)

Projected sensitivity to non-Newtonian forces:
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Heavy millicharged particles

» As a first application of this force sensing technique, we have performed a
search for millicharged particles (Igl << 1e) bound in the microspheres

« Sensitive to single fractional charges as smallas 5 x 10° ¢

« Current sensitivity (<1 aN) limited by residual response due to
microsphere inhomogeneities that couple to E-field gradients

Measured residual response:
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Limits on abundance of millicharged particles:
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Coulomb’s

law

« Dark photons or millicharged particles from
a hidden sector could lead to deviations
from Coulomb’s law at short distance:

Schematic of simplified geometry:
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Chameleons

_ Constraints on power law chameleons:
- There has been recent theoretical

interest in light scalars with screened
interactions at short distances

* In the “chameleon” mechanism, the
effective mass becomes large in high
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Summary

» Levitated microspheres can enable novel searches for a variety of models
that can account for dark matter or dark energy

« Ability to control charge state and optical potential allows precise
measurement and mitigation of electrostatic backgrounds

« Have demonstrated force sensitivity <1018 N, but substantial improvement
IS possible

« Can probe significant amounts of unexplored parameter space for new
forces coupling to mass at length scales from 0.1 — 40 um

» Also will enable sensitive searches for dark photons, millicharged
particles, and chameleon dark energy models
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